DNA is material that governs inheritance of eye color, hair color, stature, bone density and many other human and animal traits. DNA is a long, but narrow string-like object. A one foot long string or strand of DNA is normally packed into a space roughly equal to a cube 1/millionth of an inch on a side. This is possible only because DNA is a very thin string.
Our body's cells each contain a complete sample of our DNA. One cell is roughly equal in size to the cube described in the previous paragraph. There are muscle cells, brain cells, liver cells, blood cells, sperm cells and others. Basically, every part of the body is made up of these tiny cells and each contains a sample or complement of DNA identical to that of every other cell within a given person. There are a few exceptions. For example, our red blood cells lack DNA. Blood itself can be typed because of the DNA contained in our white blood cells.
Not only does the human body rely on DNA but so do most living things including plants, animals and bacteria.
A strand of DNA is made up of tiny building-blocks. There are only four, different basic building-blocks. Scientists usually refer to these using four letters, A, T, G, and C. These four letters are short nicknames for more complicated building-block chemical names, but actually the letters (A,T, G and C) are used much more commonly than the chemical names so the latter will not be mentioned here. Another term for DNA's building blocks is the term, "bases." A, T, G and C are bases.
For example, to refer to a particular piece of DNA, we might write: AATTGCCTTTTAAAAA. This is a perfectly acceptable way of describing a piece of DNA. Someone with a machine called a DNA synthesizer could actually synthesize the same piece of DNA from the information AATTGCCTTTTAAAAA alone.
The sequence of bases (letters) can code for many properties of the body's cells. The cells can read this code. Some DNA sequences encode important information for the cell. Such DNA is called, not surprisingly, "coding DNA." Our cells also contain much DNA that doesn't encode anything that we know about. If the DNA doesn't encode anything, it is called non-coding DNA or sometimes, "junk DNA."[1]
The DNA code, or genetic code as it is called, is passed through the sperm and egg to the offspring. A single sperm cell contains about three billion bases consisting of A, T, G and C that follow each other in a well defined sequence along the strand of DNA. Each egg cell also contains three billion bases arranged in a well-defined sequence very similar, but not identical to the sperm.
Both coding and non-coding DNAs may vary from one individual to another. These DNA variations can be used to identify people or at least distinguish one person from another.
What is a Locus?
A locus (with a hard "c", LOW-KUS) is simply a location in the DNA. The plural of locus is, loci ( with a soft "c", pronounced LOW-S-EYE). Again, the DNA is a long string like object as illustrated below. A locus is simply a location in the DNA. Such locations, or loci, reside at specific places on chromosomes.
No comments:
Post a Comment